SPS Impact on Social System*

Keiichiro Asakura
Faculty of Economics, Ryutsu Keizai University
120, Ryugasaki City, Ibaraki 301-8555, Japan
E-mail: asakura@rku.ac.jp

Satoshi Nakano
Keio Economic Observatory (KEO), Keio University
2-15-45 Mita, Minatoku, Tokyo 108-8345, Japan

Abstract

We have focused on Solar Power Satellite (SPS) as a new power generation system and cleared CO2 emissions of several types of SPS. In this paper, approaching the social effects of SPS as a new stage of our research, we calculate not only the CO2 emission but also the effects on employment in the process of constructing and introducing a new concept of Multi-Buss-Tether-Type SPS, presented by Susumu Sasaki (JAXA), using 2000 Japanese Input-Output Table.

The result on CO2 emission indicates that CO2 emission per unit of energy generated by the Multi-Buss-Tether-Type SPS is a little more than from nuclear power system, however, much less than LNG-fired power system and coal-fired energy system, so the new SPS is one of the most effective alternative technology for further CO2 reduction in electric power generation.

The results on employment show that efficiency of employment repercussion effects of introducing SPS ranks between construction of existing electricity generation system and average public investment, furthermore, introducing SPS don’t necessarily cause large miss match in Japanese labor market.

Employment analysis on introducing SPS into social system is the first attempt in our SPS study, so that we will have to clear the dynamic effect after SPS is incorporated into the social electricity generation system along with refining basic SPS data.

SPSの社会的評価

朝倉啓一郎1 中野論2

1.はじめに
われわれは、環境保全技術のCO2負荷計算の一環として、化石燃料を使用しない大規模発電システムである「宇宙太陽発電衛星(Solar Power Satellite; SPS)」に着目してきた。宇宙太陽発電衛星は、未来の技術だが、現在の産業技術にとっても、開発・導入の可能性が高い大規模な発電システムである。SPSの基本構想は、1968年にアメリカのレイザー(P.E.Glaser)によって提案され、1978年にアメリカのエネルギー省（Department of Energy: DOE）と航空宇宙局（National Aeronautics and Space Administration: NASA）によって、通称リファレンスシステムと呼ばれるSPSが発表された（以下、DOE/NASAリファレンスシステムと呼称する）。DOE/NASAリファレンスシステム自体は現在から約30年前のプランであるが、近年まで詳細に検討された宇宙発電システムは発表されていなかった。その後、NASAをはじめとして、宇宙科学研究所（現：JAXA）、宇宙開発事業団（現：JAXA）や無人宇宙実験システム研究開発機構（USEP）など、新しいタイプのSPSシステムが提案されてきたことから、それに対応して、われわれも基本型であるDOE/NASAリファレンスシステムを出発点として、今日的なSPSシステムのCO2負荷計算を進めてきた。

本報告では、佐々木(2007)が提案するマルチバスター型SPSに着目し、その建設・導入過程において、一、CO2負荷を計算し、二、雇用に与える影響を明らかにすることにより、SPSの社会的な影響評価にアプローチする。

注：本報告は、マルチバスター型SPSのCO2負荷計算と雇用影響の計測結果をとりまとめているが、面の都合により、計算モデルや利用データ等については詳しく触れることができなかった。それについては、吉岡完治、松岡秀雄編著『宇宙太陽発電衛星の地球と将来』(2008年、慶應義塾大学出版会)の第6章と第7章を参照された。

2.マルチバスター型SPSの基本構成
図表1は、今回推計するマルチバスター型SPSの全体構成を示している。はじめに、図中の③の衛星本体に着目すると、その第1の特徴は、衛星がモジュール構造を持ち、1モジュールごとにバスタプラントと太陽電池パネルがデバイスによって結ばれていることである。そして、第2の特徴は、1モジュールの発電衛星自体が発電機能を持つことであり、実際の運用においては、1つのユニットが625個と結ばれて衛星全体（約2.5km×2.5km）を構成する。搭載する太陽電池は、変換効率35%の高効率太陽電池であり、発電電力は、625ユニットを連結して、2.8GW、2.5GWである。また、太陽電池パネルで発電した電力はバッテリーに蓄えられ、1.36GWの電力として地上に送電される。そして、宇宙空間での送電、地上の受電アンテナの集電、およびアンテナで受電したマイクロ波の商用電力への変換におけるロスによって、地上で1GW発電可能なシステムとなる。

つぎに、SPSシステムの建設過程を概観すると、そこでは、①の再使用型低軌道輸送機が②の軌道間輸送機と③の衛星ユーニットを低軌道まで運び、つぎに、②の軌道間輸送機が衛星ユニットを静止軌道まで運び、衛星が自動展開した後、625個のモジュールが組み合わされ、SPS衛星が完成する。そして、衛星の発電電力がマイクロ波に変換され、地上的受電システムである④

●本報告は、慶應義塾大学産業研究所のSPS研究所グループにおいて、CO2負荷計算および雇用影響の計測シミュレーション結果報告である。その過程において、JAXAの佐々木進氏ならびに成尾芳博氏に多数の情報提供とアドバイスを頂いたことに心より感謝申し上げる。なお、本報告に含まれる誤りは我々の責任である。

1 流通経済大学経済学部
2 慶應義塾大学産業研究所
3 現在の宇宙用太陽電池の変換効率は、シリコン系の太陽電池が10数%、ガリウム化素系の太陽電池が20数%であり、今回想定する変換効率35%は将来目標値である。
のレクテナに送られた後、産業・家計に配電される。本報告の第3節と第4節で述べるCO2負荷計算および雇用波及計算は、①から④のシステム全体をカバーして計測作業を進めることになる。

図表1 マルチバスター型SPSの建設過程

静止軌道	36,000km
太陽電池パネル	2.5km × 2.5km 上面:2.5GW 下面:2.5GW パッテリで蓄電後:1.36Gw
低軌道	数100メートル
④レクテナ直径:3.5km	
電力を産業・家計へ1GW	

注:マルチバスター型SPSの建設過程と基本データを佐々木進氏(JAXA)の情報提供のもと作成。

3.マルチバスター型SPSのCO2負荷
3.1計算モデル
本報告では、慶應義塾大学が公表した2000年環境分析用産業連関表(中野他(2008))を利用して、SPSのCO2負荷計算を行う。
環境産業連関表を利用したCO2負荷計算のモデルとして、オープン型産業連関モデルをもといる(式(1))。

\[
CO2^k = (I - A)^{-1} f^k \cdots \ (1)
\]
ただし、\(C : \) CO2排出係数行列(対角化)
\((I - A)^{-1} : \) レオンチェフ逆行列
\(f^k : \) SPSの第\(k \)番目の構成物の最終需要ベクトル(例えば、\(k = 1 \)は衛星本体、\(k = 2 \)は軌道間輸送機、・・・)
\(CO2^k : \) SPSの第\(k \)番目の構成物のCO2負荷ベクトル

式(1)の右辺の\(C \)は中野他(2008)によって計測された基本的な計測値であり、また、\((I - A)^{-1} \)は公表される産業連関表そのものから計測される。したがって、マルチバスター型SPSのCO2負荷計算を行うためには、式(1)の最終需要\(f^k \)を作成することが必要であり、それについては、図表1で示したシステム全体の基本構成について、各種統計資料・報告書を利用して、衛星本体、再使用型低軌道輸送機、軌道間輸送機、レクテナ、推進燃料および衛星本体と軌道間輸送機に搭載する太陽電池ごとに作成している。
3.2 CO2 負荷の計算結果
図表2は、マルチバステナー型 SPSシステムのCO2負荷計算の結果を示しており、トータルで約1千トンのCO2が排出される。その内訳を見ると、再使用型低酸素輸送機の推進剤（液体酸素・液体水素）の製造過程で排出されるCO2が全体の約6割を占める。つぎに、図表3は、テーザー型 SPSを建設する時に排出されるCO2負荷を産業部門別に示しており、電力部門からのCO2排出量が全体の半分以上を占めていることがわかる。最後に、図表4は、テーザー型 SPSの耐用年数を40年と想定し、電力生産1単位あたりCO2負荷にかんして、SPSと既存の発電システムを比較している。CO2負荷の観点からマルチバステナー型 SPSを評価すると、原子力発電やDOE/NASAリファレンスシステムのSPSよりは、やや高いとはいえ、化石燃料を使用する発電システムと比較して、非常に低いレベルあることが明らかになった。

図表2 マルチバステナー型 SPSの基本構成別のCO2負荷

<table>
<thead>
<tr>
<th>発電種別</th>
<th>構造体</th>
<th>太陽電池</th>
</tr>
</thead>
<tbody>
<tr>
<td>発電量</td>
<td>111.7</td>
<td>219.5</td>
</tr>
<tr>
<td>軌道間輸送機</td>
<td>構造体</td>
<td>アルゴン</td>
</tr>
<tr>
<td>軌道間輸送機</td>
<td>構造体</td>
<td>太陽電池</td>
</tr>
<tr>
<td>再使用型低酸素輸送機</td>
<td>構造体</td>
<td>液酸水</td>
</tr>
<tr>
<td>レクテナ</td>
<td>60.3</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>1074.8</td>
<td></td>
</tr>
</tbody>
</table>

注：マルチバステナー型 SPS（地上で1GWを1基建設するときのCO2負荷を図表1の構成によって計算した結果。

図表3 マルチバステナー型 SPSの産業部門別のCO2負荷

<table>
<thead>
<tr>
<th>産業部門</th>
<th>万トン</th>
<th>シェア（%）</th>
</tr>
</thead>
<tbody>
<tr>
<td>事業用発電</td>
<td>584.8</td>
<td>54.4</td>
</tr>
<tr>
<td>自家用発電</td>
<td>67.9</td>
<td>6.3</td>
</tr>
<tr>
<td>道路荷物輸送</td>
<td>56.2</td>
<td>5.2</td>
</tr>
<tr>
<td>圧縮ガス・液化ガス</td>
<td>43.8</td>
<td>4.1</td>
</tr>
<tr>
<td>鉄道</td>
<td>43.7</td>
<td>4.1</td>
</tr>
<tr>
<td>その他</td>
<td>278.5</td>
<td>25.9</td>
</tr>
<tr>
<td>合計</td>
<td>1074.8</td>
<td>100.0</td>
</tr>
</tbody>
</table>

注：マルチバステナー型 SPS（地上で1GWを1基建設するときのCO2負荷を産業部門別に計算した結果。

図表4 電力生産1単位あたりCO2負荷：積定値(g・CO2/kWh)

4.マルチバステナー型 SPSの雇用インパクト
4.1 問題意識と前提条件
本研究における第2の評価軸は、雇用に与える影響である。マルチバステナー型 SPSの導入は、新規雇用を誘発する効率的な手段なのか。どのような部門の雇用を誘発するのか。既存の電
力部門との激しい競合が起こりそうか。他の公共投資や発電所建設と比較して、労働市場における需給の大きなものスマッチは起こりそうか。このような問いに答えるために、本研究では産業連関分析のオープンモデルを用いて、雇用誘発効果を推計し、経済学的な手法によってマルチバスターザ型 SPS と他の技術との比較分析を行っている。ただし、本研究で扱う雇用に与える影響は、SPS 建設時点の短期的な評価であって、SPS 普及後のダイナミックな評価は行っていないことに注意したい。

4.2 雇用影響の計算結果

マルチバスターザ型 SPS の建設による雇用誘発効果は、約 20 万人である。この推計結果をもとに、新規雇用を誘発する効率的な手段かどうか他の代替技術と比較するために、雇用誘発乗数を推計したのが図表 5 である。雇用誘発乗数とは、産業連関分析のオープンモデルをもって推計された各技術の発電所建設にともなう総雇用誘発量、それぞれの投資額で除したものである。雇用誘発の効率性の観点から評価すれば、マルチバスターザ型 SPS は、平均的な公共投資より若干効率が悪いが、他の代替発電技術よりはるかに効率が良いことがわかる。

つきに、マルチバスターザ型 SPS の建設がどのような部門の雇用を誘発するかを見ると、卸売、資材輸送などの流通部門での誘発が大きい(図表 6)。また、マルチバスターザ型 SPS の建設には大量の電力が必要となることから、電力発電も上位部門に入っており、SPS 導入は短期的に必ずしも既存の電力部門の雇用を奪わないと考えられる。

マルチバスターザ型 SPS の導入が、大きな雇用のミスマッチを発生させる可能性があるかを評価するために、雇用誘発の部門別雇用構成を公共投資と比較する。ピアソン相関係数で判断すると、大半の部門で職種で独立は小さく、また有意に正の相関がある。つまり、さらに厳密に両者の差の存在を確認するために、Wilcoxon の符号順位検定を行うと、有意に差があるとの結果を得た(図表 7)。したがって、マルチバスターザ型 SPS 導入によって誘発される雇用構成は、平均的な公共投資のそれと統計的に有意に差が存在しているが、類似しているため、大きな雇用のミスマッチを引き起こすような技術ではないと考えられる。

図表 5：雇用誘発乗数

<table>
<thead>
<tr>
<th>(単位：人/百万円)</th>
</tr>
</thead>
<tbody>
<tr>
<td>マルチバスターザ型 SPS</td>
</tr>
<tr>
<td>微粉炭火力</td>
</tr>
<tr>
<td>LNG火力</td>
</tr>
<tr>
<td>加圧水型原子力</td>
</tr>
<tr>
<td>平均的な公共投資</td>
</tr>
</tbody>
</table>

図表 6：マルチバスターザ型 SPS の部門別の雇用誘発上位 20 部門（単位：人）

<table>
<thead>
<tr>
<th>部門</th>
<th>雇用誘発</th>
<th>輸入脱離</th>
</tr>
</thead>
<tbody>
<tr>
<td>卸売</td>
<td>47,473</td>
<td>-936</td>
</tr>
<tr>
<td>道路貨物輸送</td>
<td>22,357</td>
<td>-335</td>
</tr>
<tr>
<td>その他の電子部品</td>
<td>20,347</td>
<td>-789</td>
</tr>
<tr>
<td>压縮ガス・液化ガス</td>
<td>9,882</td>
<td>-10</td>
</tr>
<tr>
<td>企業内研究開発</td>
<td>6,659</td>
<td>-434</td>
</tr>
<tr>
<td>その他の商社業サービス</td>
<td>5,647</td>
<td>-570</td>
</tr>
<tr>
<td>半導体製品</td>
<td>5,534</td>
<td>-94</td>
</tr>
<tr>
<td>金融</td>
<td>5,432</td>
<td>-507</td>
</tr>
<tr>
<td>ブラッシュチップ製品</td>
<td>3,656</td>
<td>-202</td>
</tr>
<tr>
<td>小売</td>
<td>3,329</td>
<td>-241</td>
</tr>
<tr>
<td>建設業</td>
<td>2,878</td>
<td>-193</td>
</tr>
<tr>
<td>事業用発電</td>
<td>2,833</td>
<td>-93</td>
</tr>
<tr>
<td>集積回路</td>
<td>2,606</td>
<td>-390</td>
</tr>
<tr>
<td>労働者派遣サービス</td>
<td>2,097</td>
<td>-191</td>
</tr>
<tr>
<td>機械修理</td>
<td>2,094</td>
<td>-203</td>
</tr>
<tr>
<td>建物サービス</td>
<td>1,917</td>
<td>-141</td>
</tr>
<tr>
<td>情報サービス</td>
<td>1,766</td>
<td>-180</td>
</tr>
<tr>
<td>物品組立業（組立自動車）</td>
<td>1,744</td>
<td>-133</td>
</tr>
<tr>
<td>その他の金融製品</td>
<td>1,738</td>
<td>-113</td>
</tr>
<tr>
<td>法務・財務・会計サービス</td>
<td>1,731</td>
<td>-173</td>
</tr>
</tbody>
</table>

図表 7：Wilcoxon の符号順位検定の結果

<table>
<thead>
<tr>
<th>(p値)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPSと2000年の公共投資の雇用誘発</td>
</tr>
<tr>
<td>p値<0.001</td>
</tr>
<tr>
<td>SPSと微粉炭火力の雇用誘発</td>
</tr>
<tr>
<td>p値<0.001</td>
</tr>
<tr>
<td>SPSとLNG火力の雇用誘発</td>
</tr>
<tr>
<td>p値<0.001</td>
</tr>
<tr>
<td>SPSと加圧水型原子力の雇用誘発</td>
</tr>
<tr>
<td>p値<0.001</td>
</tr>
</tbody>
</table>
5.小括
本報告の結果から、マルチバスターラ型 SPS システムは、建設時に大量の CO2 を排出するとはいえ、単位あたり CO2 排出量でみると、化石燃料を使用する既存の発電システムより非常に CO2 負荷が低いことが明らかになった。また、雇用影響に目を転じると、雇用誘発の効率性の観点からは、既存の発電システムと平均的な公共投資の中間に位置し、また、導入過程においては大きな雇用のミスマッチを生じないことが計測された。

これまで進めてきたいろいろな SPS システムの CO2 負荷計算の結果から、「宇宙空間で発電した電力を地上に送電して利用する」という SPS の基本コンセプトのもとになれば、システムの CO2 負荷は、おおよそ 2 枚の CO2 排出量（g-CO2/kWh）に落ち着くと考えてもよいかかもしれない。それに対しては、統一の環境産業連関表や単価をもとに再推計を行うことによって、各システムの技術的特徴を CO2 負荷の観点から再検討する確証作業が必要であろう。また、SPS の建設時には、既存の発電部門から CO2 が最も排出されることから、ソーラープリーダーによる SPS 建設を想定することや、液体燃料の製造に必要な電力を SPS から供給するシミュレーション分析を行うこと等も考えられるだろう。とくに、SPS の雇用分析は、今回が初めての試みであり、データの精細化とともに、SPS が既存の発電システムとして組み込まれた後の社会的な影響にも研究を進めねばなるまい。それが今後の課題である。

参考文献
・USEF：無人宇宙実験システム研究開発機構(2003)『宇宙太陽発電システム実用化技術調査研究・宇宙太陽発電システム(SPS)実用化技術検討委員会；報告書』。
・USEF：無人宇宙実験システム研究開発機構(2007)『平成 18 年度：太陽光発電利用促進技術調査成果報告書別冊』。
・朝倉啓一郎・小林裕太郎・吉岡治(2003)「USEF 型 SPS の CO2 負荷」『第 6 回宇宙太陽発電システム(SPS)シンポジウム 講演要旨集』 pp.117-122。
・朝倉啓一郎・中野論(2008)「マルチバスターラ型 SPS の CO2 負荷」吉岡治・松岡秀雄編著『宇宙太陽発電衛星のある地球と将来』第 6 章、pp.89-148、慶應義塾大学出版会。
・大橋永樹・横山隆志・石谷久・吉田好邦・渡辺浩一・吉岡治(2001)「宇宙太陽発電衛星の CO2 負荷－レファレンスシステムとニューコンセプト－」 KEO Discussion Paper、no.G-127。
・慶應義塾大学産業研究所環境問題分析グループ(1996)『環境分析用産業連関表』KEO モノグラフシリーズ no.7 慶應義塾大学産業研究所。
・佐々木進(2008)『SPS のデザインとシステム技術』吉岡治・松岡秀雄編著『宇宙太陽発電衛星のある地球と将来』第 4 章、pp.45-59、慶應義塾大学出版会。
・総務省(2004)『平成 12 年産業連関表』全国統計協会連合会。
・中野論(2005)『平成 12 年環境分析用産業連関表』 KEO Discussion Paper no.098。
・中野論(2006)『住宅用太陽光発電装置の CO2 削減効果をユーザーコストの計算』 KEO Discussion Paper no.102。
・中野論・早見均・中村政男・鈴木将之(2008)『環境分析用産業連関表とその応用』慶應義塾大学出版会。
・中野論(2008)「マルチバスターラ型 SPS の雇用への影響評価」吉岡治・松岡秀雄編著『宇宙太陽発電衛星のある地球と将来』第 7 章、pp.149-170、慶應義塾大学出版会。
・本藤祐樹・内山洋男・森泉由恵(2000)「ライフサイクル CO2 排出量による発電技術の評価」『電力中央研究所報告』no.Y99009。
・吉岡治・菅野雄・野村浩二・朝倉啓一郎(1998a)「宇宙太陽発電衛星の CO2 負荷」 KEO Discussion Paper、no.G-2。
・吉岡治・菅野雄・野村浩二・朝倉啓一郎(1998b)「宇宙太陽発電衛星の CO2 負荷-若干のシミュレーション」 KEO Discussion Paper、no.G-14。
・Working Group II (2002)『アジアの経済展開と環境保全：未来技術の CO2 負荷』第 2 巻上・下 慶應義塾大学産業研究所。